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Abstract  Because atmosphere itself is a nonlinear system and there exist some problems using 
the linearized equations to study the initial error growth, in this paper we try to use the error nonlinear 
growth theory to discuss its evolution, based on which we first put forward a new concept: nonlinear 
local Lyapunov exponent. It is quite different from the classic Lyapunov exponent because it may 
characterize the finite time error local average growth and its value depends on the initial condition, 
initial error, variables, evolution time, temporal and spatial scales. Based on its definition and the at-
mospheric features, we provide a reasonable algorithm to the exponent for the experimental data, 
obtain the atmospheric initial error growth in finite time and gain the maximal prediction time. Lastly, 
taking 500 hPa height field as example, we discuss the application of the nonlinear local Lyapunov 
exponent in the study of atmospheric predictability and get some reliable results: atmospheric pre-
dictability has a distinct spatial structure. Overall, predictability shows a zonal distribution. Prediction 
time achieves the maximum over tropics, the second near the regions of Antarctic, it is also longer 
next to the Arctic and in subtropics and the mid-latitude the predictability is lowest. Particularly 
speaking, the average prediction time near the equation is 12 days and the maximum is located in the 
tropical Indian, Indonesia and the neighborhood, tropical eastern Pacific Ocean, on these regions the 
prediction time is about two weeks. Antarctic has a higher predictability than the neighboring latitudes 
and the prediction time is about 9 days. This feature is more obvious on Southern Hemispheric 
summer. In Arctic, the predictability is also higher than the one over mid-high latitudes but it is not 
pronounced as in Antarctic. Mid-high latitude of both Hemispheres (30°S―60°S, 30°―60°N) have the 
lowest predictability and the mean prediction time is just 3―4 d. In addition, predictability varies with 
the seasons. Most regions in the Northern Hemisphere, the predictability in winter is higher than that 
in summer, especially in the mid-high latitude: North Atlantic, North Pacific and Greenland Island. 
However in the Southern Hemisphere, near the Antarctic regions (60°S―90°S), the corresponding 
summer has higher predictability than its winter, while in other areas especially in the latitudes of 
30°S―60°S, the prediction does not change obviously with the seasons and the average time is 3―5 
d. Both the theoretical and data computation results show that nonlinear local Lyapunov exponent and 
the nonlinear local error growth really may measure the predictability of the atmospheric variables in 
different temporal and spatial scales. 
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If neglecting the effects of some stochastic factors, 
we regard the atmospheric system as the deterministic 
nonlinear system and its development is determined by 
the physical laws, boundary condition and the initial 
condition. Numerical prediction is based on this idea: 
if given an accurate model and a perfect observation 
system, we can make an exact prediction for the future 
weather. However, initial small error is unavoidable 
and it will grow rapidly through nonlinear interactions 
in the atmospheric dynamics even if the model is 
somehow made perfect, all of which lead to the pre-
dictability studies. 

At the first of the 1940s, Kolmogoroff stated that 
atmospheric initial errors would lead to different at-
mospheric states in a long time[1]. In 1957, Thomp-
son[2] first put forward the problem of the atmospheric 
predictability. Later Lorenz[3] mentioned three meth-
ods that were used to study this problem. By now, 
most predictability studies are the model-based ap-
proach and estimating the prediction error is the main 
aim for the classic atmospheric predictability re-
search[1,4―7]. Usually, given two very similar initial 
fields and integrating the same atmospheric model, we 
may obtain the initial error growth and according to 
the error doubling time, estimate the maximal predic-
tion time. But the latest investigation shows that the 
prediction limitation achieved by this method depends 
on the calculation, computer accuracy and the nu-
merical model itself[8―12], so the resulting prediction 
time is not the prediction limitation of the real atmos-
phere or climate, nor the exact measure of the model 
predictability. Dalcher and Kalnay[13] also pointed out 
that the estimated “doubling time of small error” was 
not a good measure of error growth. Because the true 
state of the atmosphere is not known due to uncertain- 
ties in the analysis and model initialization, it can not 
be measured directly; and the results gained by ex- 
trapolation are very sensitive to the parameterization 
in the empirical model of error growth. Arpe et al.[14] 
also referred that it was difficult to estimate small er-
rors doubling time. However, error growth at the finite 
time is the best parameter because it is defined by the 

available (either model or observational) data. 
Lyapunov exponents quantify the average exponen-

tial diverging (decaying) rate of the initial nearby or-
bits over the whole phase space for infinite time. In the 
chaotic systems theory, it is related to the mean growth 
rate of the initial error so in some researches, it is used 
to discuss the atmospheric predictability[15―17]. When 
there is at least one positive Lyapunov exponent, it 
means that initial nearby orbits dirvrge with the time 
and the attractor is the chaotic. Usually the inverse of 
the sum of all positive Lyapunov exponents or second 
order Renyi entropy is used to measure the predict-
ability. In ergodic theory, Lyapunov exponents σ  
don’t depend on the initial values and all orbits will 
lead to the same exponents, which mean that 
Lyapunov exponents characterize the global properties 
of the attractors[18]. But in fact the initial error growth 
is not the same everywhere[19―21] so if chaotic attrac-
tors’ predictability is the function of time and space or 
we are interested in the short-term prediction, it is 
necessary to study the local dynamic properties of at-
tractors. Later, some researchers[22―27] pointed out that 
local or limited time Lyapunov characteristic expo-
nents may measure the local predictability and the 
definition is the average growth rate of the initial error 
in the finite time. Compared with the classic Lyapunov 
exponents, local Lyapunov exponents measure pre-
dictability in more effective way because they can ex-
hibit the temporal and spatial structures, which can be 
used to detect the divergence (convergence) rate of the 
nearby orbits and to determine the regions with higher 
(lower) predictability. However the mentioned local 
Lyapunov exponents are essentially the same as 
Lyapunov exponents, both of them are assumed that 
the initial error is so small that its evolution satisfies 
the tangential linear equation, and they are obtained by 
solving the characteristic vectors and the characteristic 
values of the evolution matrix M. But with the error 
increasing, these conditions may not be satisfied; 
moreover the accuracy of the atmospheric variables is 
not infinitely small. So there are a lot of limitations 
using the linearized error growth equation to study the 
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atmospheric predictability. 

 

Because of the existing problems, in this paper we 
do not make linear approximation of the error growth 
equations, instead we use the initial error nonlinear 
growth equations to discuss the perturbation develop-
ment, based on which we put forward a new concept: 
nonlinear local Lyapunov exponent by which to meas-
ure the initial error local nonlinear growth rate in finite 
time. Considering its definition and the atmospheric 
features, we provide the algorithm to the exponent for 
the experimental data and the method to estimate the 
maximal prediction time; lastly we compute the initial 
error locally average growth, determine the prediction 
time and discuss the variation of the global predict-
ability with space and seasons. 

1  Theoretical background 

1.1  Classic Lyapunov exponent 

The weather or climate system can be expressed by 
partial differential equations and by Galerkin method 
it becomes the nonlinear ordinary differential equa-
tions: 

 ( ) ( ( ))d t
dt

=X F X t , (1) 

where X = (x1, x2, …, xn)T. A solution of eq. (1) X(t) 
will be called a reference solution with its initial phase 
X0 = X(0); Let vector δ X0 be the infinitesimal initial 
perturbation supposed on X0 at the initial time, then 
after time t, X0+ δ X0 will develop into X(t)+δ X(t), 
which satisfy the equations: 

 ( ( ) ( )) ( ( ) ( ))d t t t
dt

δ+ = +X X F X X tδ . (2) 

(2)―(1): 

 ( ) ( ( ) ( )) ( ( ))d t t t
dt

δ δ= + −X F X X F X t . (3) 

Expanding to the first order in X(t), error evolution 
obeys the tangent linear equations: 

 ,d
dt

δ δ=X G X   (4) 

where G is the Jacobian matrix, 

 ,
i

i j
j
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.  (5) 

The solution of eq. (4) is written as 

 ,  (6) 0( ) ( , ) ( )t t t tδ =X M X 0δ
where the matrix M(t, t0) is called the evolution matrix 
and it depends on the time. Eq. (4) means that the 
growth of the initial infinitesimal error is related to the 
characteristic values of the corresponding Jacobian 
matrix GN×N, but Lyapunov exponents do not equal the 
characteristic values of the Jacobian matrix and they 
are derived by the evolution matrix M(t, t0), the rela-
tion between G and M(t, t0) is 

 . (7) 0
( )

0( , ) e
t

t
t dt

t t
′ ′∫=

G
M

Oseledec[28] proved that for almost every initial point 
, the following limitation are always satisfied: 0( )tX

 
1

2lim( ) t
t

∗
∞ →∞

= ×M M M , (8) 

where M* is the adjoint of M, meanwhile, there exists 
an orthonormal set of vectors fi such that 

 0 0
1lim ln ( , ) ( )i t

t t t
t

σ
→∞

= M fi . (9) 

σi is a characteristic value of M and fi must be an as-
sociated characteristic vector. It is defined as 
Lyapunov exponent; n dimensional phase space has n 
characteristic values and they make up the Lyapunov 
spectrum. They mean the initial infinitesimal errors 
average exponential growth rate along the characteris-
tic vectors fi in the phase space. The largest Lyapunov 
exponent is the growth rate of initial perturbation 
along the most rapidly growing direction. Lyapunov 
exponents do not depend on the initial value and they 
characterize the global properties of the attractors in 
dynamical system. 

The above derivation is assumed that the magnitude 
of initial small errors is small enough so that linearity 
assumptions holds, but as well known with the error’s 
increasing nonlinear role becomes more and more 
important to the error growth, thus the linear approxi-
mation is not applicable. Some papers discussed in 
detail about the limitation of using the linearized 
model to study the error development[29–31]. In this 
paper, we keep the nonlinear term and define a new 
dynamic diagnostics: nonlinear local Lyapunov expo-
nent, which can be used to measure the error nonlinear 
local growth in finite time. 
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1.2  Nonlinear local Lyapunov exponent 

Let x = (x1, x2, ……, xn)T be the variables partici-
pating in the dynamics, the vector x and its perturba-
tion vector x+δ  satisfy the following equations: 

 ( , )d t
dt

=
x F x , (10) 

 ( ) ( ,d t
dt
+

= +
x δ F x δ ) ,  (11) 

where δ = (δ1, δ2, …, δn)T is the perturbation vector. 
Then the error evolution laws are 

 ( , , )d t
dt

=
δ F x δ δ , (12) 

where ( , , ) [ ( , ) ( , )]t t= + −F x δ F x δ F x δ

 

t  are typi-
cally nonlinear error growth functions. The solution 
for eq. (12) is written as 
 ( ) ( , , ) (0)t tη=δ x δ δ , (13) 

where η (x, δ, t) are the nonlinear error propagator 
operators, which govern the growth of initial errors 
arising from uncertainties in initial conditions. 

Compared with the linear operators M(t, t0) in eq. 
(6), nonlinear propagator operators η (x, δ, t) are es-
sentially different. The latter depends on not only time 
t, but also the variables x and the initial errors δ, which 
is the special property of the nonlinear theory. For 
variable xi, we define the nonlinear local Lyapunov 
exponent: 

 
( )1( , , ) ln
(0)

i
i i

i

t
x t

t
δ

λ δ
δ

= . (14) 

By eq. (14), we know in the limited time t, initial 
error of the variable xi develops with the average rate 

( , , )e i ix tλ δ ; the exponent λ depends on the initial value, 
time interval, and initial error so it describes the local 
properties of attractors. Positive nonlinear local 
Lyapunov exponent indicates that the distance be-
tween two neighboring orbits will be amplified and the 
correlation between the two nearby trajectories is lost. 
The larger the exponent is, the faster the error grows 
and so the lower the predictability is. 

From the above, we know that there is essential 
difference between the classic Lyapunov exponent and 
nonlinear local Lyapunov exponent. First, they have 
the different precondition; the former is based on the 
tangent linear error growth equations while the latter  

includes the nonlinear role in the equation. Second, the 
former is to discuss the average expansion rate of all 
initial errors in the infinite long time, according to the 
erogic theory its value is independent on the initials, 
so the error growth given by the Lyapunov exponent is 
uniform over the whole state space. In addition, it just 
measures the mean growth rate along the characteristic 
vector fi, but can not measure the expansion along any 
variable direction. For example, the largest Lyapunov 
exponent just measures the mean growth rate along the 
most rapidly growth direction. However, the nonlinear 
local Lyapunov exponent may discuss the average 
growth rate of the initial error in the prescribed time 
along any variable direction and its value depends on 
the initial value, initial error, variables, time interval, 
temporal and spatial scale, which characterizes the 
local properties of the attractors. So for a complicated 
nonlinear atmospheric system, nonlinear local 
Lyapunov exponent may study the predictability of all 
variables in the different time and spaces. In view of 
the theoretical analysis, it may better measure the ini-
tial error nonlinear evolution. Nonlinear Lyapunov 
exponent in this paper is also different from the local 
Lyapunov exponent[22―27] mentioned before, the latter 
is essentially the same as the Lyapunov exponent; both 
are based on the linearized error growth equation. 
However the real atmospheric initial error is not in- 
finitesimal, so it has much limitation using the linear 
theory to discuss the predictability. 

2  Data, computation method and the comparison 
to the classic method 

2.1  Data 

The data in this paper is the NCEP reanalysis data: 
1958―1997 500 hPa daily 4-time geopotential height, 
2.5° lat. by 2.5° lon. resolution, 144×73 grid points in 
global. 

2.2  Introduction of the calculation of nonlinear local 
Lyapunov exponent  

(1) Given a time series x(t), taking t0 = 1, x(t0) as the 
initial point, during the same time [t0−η, t0+η] in 40 
years, we find the nearest neighbor to the initial point 
and regard it as the smallest initial error of x(t0), it is 
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denoted x′(t0). By doing this we guarantee two states 
have the same dynamical characteristics. The distance 
between two points is 
 0 0( ) ( ) ( )L t x t x t′= −

 

0 . (15) 

This step is important and quite different from the 
Wolf[32] algorithm. Classical Lyapunov exponent is 
unrelated to initial errors δ, so it is reasonable to find 
the nearest neighbor to the initial point in the whole 
phase space as the perturbed initial value; but for 
nonlinear local Lyapunov exponent, it depends on δ  
so it must be careful to find a meaningful nearest point. 
Two points are required not only to have the suffi-
ciently small distance, but also the almost same dy-
namic characteristics. As well known, there exists a 
distinctive annual periodic in the weather system, so 
for an initial point x(t0) in spring, its nearest neighbor 
in distance may be x(t), where t is some day in autumn, 
but such two points have the different dynamic char-
acteristics and their evolution tendency are opposite. 
Fig. 2 is the initial error time evolution which is ob-
tained by Wolf methods; it shows that error is always 
increasing which is not identical to the real world; it 
implies that this method has some limitation. The 
method in this paper has the atmospherics dynamic 
background and may be used to compute the real ini-
tial error growth. Moreover, our approach avoids the 
problems in the reconstructed phase space method[33]. 

(2) After the evolution time T, the initial point x(t0) 
evolves into x(t0+T) along the orbit, and x′(t0) develops 
into x′(t0+T). The initial length will become the new 
length: 
 0 0 0( ) ( ) (L t T x t T x t T′ ′+ = + − + ) .  (16) 

The average growth rate of the initial error in the time 
T is 

 0
1

0

(1 ln
( )T

L t T
T L t

λ
′ )+

= .  (17) 

(3) Taking x(t0+1) as the initial point, repeating 
processes (1) and (2), we can get 2Tλ  which means 
its average error growth rate in time interval T. 

(4) This process is repeated until the last point of 
{xi}, for every point we obtain its error average growth 
rate λTK in the time T. Then we take the mean value of 
λTK as the approximation of nonlinear local Lyapunov 
exponent in the time step T.  

 
1

1( )
N

TK
K

T
T

λ λ
=

= ∑ . (18) 

(5) T = T+1, repeating processes (1)―(4), we get 
the relationship between λ(T) and T. 

(6) From formulas (17) and (18) we get the relative 
errors mean growth in time T, 

 
1 0

( )1( ) ( ) ln
( )

N
K

K

L tErr T T T
N L t

λ
=

′
= × = ∑ . (19) 

By investing the relative errors growth, we define 
the time when errors reach the saturating level as the 
maximal prediction time.  

Fig. 1 shows the nonlinear local Lyapunov exponent 
against evolution time, the data is the zonally averaged 
time series in four latitudes: 0, 30°N, 60°N, 90°N. 

 
Fig. 1.  Time evolution of the nonlinear local Lyapunov exponent 
(NLLE: nonlinear local Lyapunov exponent). 

 
From Fig. 1, we know that at any time, nonlinear 

local Lyapunov exponent is positive and it decreases 
monotonously, which means that atmospheric initial 
error increases with time but due to the nonlinear in-
teraction its growth rate decreases. It implies that for 
real atmospheres, initial error cannot be infinitesimal 
and its growth satisfies the nonlinear laws, so there are 
some problems using the linear theory to study the 
atmospheric error growth. Fig. 1 also shows that in the 
same time intervals, initial error grows slowest in the 
equator, the second slower in 30°N, 60°N and in 90°N 
error grows fastest. The distribution of the initial 
minimum error in four latitudes shows that: error is 
smallest in the equator and it becomes larger as the 
latitude increases, which means that the larger the ini-
tial error is, the faster the growth rate becomes.  

To further demonstrate the attribution of nonlinear 
term in the error growth equation, we compare the 
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different results obtained by two theories and methods.  

2.3  Results comparing between two theories and the 
determination of maximal prediction time  

Figs. 2 and 3 show the initial relative errors time 

evolution computed by the linear theory method (Wolf, 
et al., 1985) and the nonlinear theory introduced in 
this paper, the data are the zonally averaged time se-
ries in four latitudes. In addition, according to the 
saturation error we determine the maximal prediction  

 

 
Fig. 2.  Initial relative errors (Err) linear grow with the time. (a), (b), (c), (d) are the computation results in four latitudes: 90ºN, 60ºN, 30ºN, 0º , 
respectively. The data are the zonally averaged time series. 
 

 
Fig. 3.  Same as in Fig. 2 but for the initial error nonlinear growth. The 99% of estimated saturation value (averaged error between randomly chosen 
atmospheric sates) is also shown.

 



Nonlinear local Lyapunov exponent and atmospheric predictability research 1117 

time, which is another advantage above the previous 
predictability theoretical research. 

From Figs. 2 and 3 we know that the results com-
puted by two theories are totally different. At first, 
they show the similar tends although their values are 
different, which means that when initial error is very 
small or during the initial growth period, error linear 
growth theory is still applicable; however as time in-
creases, the linear theory result shows that error is al-
ways increasing monotonously, while according to 
nonlinear theory, initial error will reach the saturated 
value in some period and oscillate around it. The dif-
ference indicates that when errors increase to some 
value, linearized error growth theory is not applicable 
anymore and the nonlinear theory is required to an-
swer the questions regarding the error growth and the 
gain in predictability. Saturation relative error (random 
error) means that the system enters the stochastic state, 
at which the initial information in the system is lost 
and the prediction is meaningless, so the associated 
time is the maximal prediction time. The limit of pre-
dictability was defined as the intersection between the 
curve representing the error average growing and the 
level line of 99% of the saturation error. The saturation 
error is estimated: by Fig. 3 we know after 15 days, 
the relative error growth is almost zero, so the estima-
tion of the saturated error is defined by the geometrical 
average of the relative errors after 15 days, the reason 
to choose a limit value slightly below the saturation 
level is to reduce the effect of sampling fluctuations. 
For zonally averaged height field in four latitudes, the 
maximal prediction times are 7 days, 6.5 days, 11 days 
and 13.5 days respectively. These results are identical 
to the well-known results, which means that the 
nonlinear error growth theory can describe the real 
atmospheric initial errors evolution, compared to the 
linear theory; it has more advantages. 

3  The application of the nonlinear local Lyapunov 
exponent in the atmospheric predictability 

In the above, we use zonally averaged geopotential 
height time series to compute the nonlinear local 
Lyapunov exponent, the relative error time evolution 
and define the time when error reaches the saturated 
level as the maximal prediction time. The results show 

that exponent in this paper may better measure the 
evolution rate of the atmospheric initial perturbation. 
Next we compute the initial error growth of the 500 
hPa height in different space, seasons and further ob-
tain the temporal and spatial distribution of the global 
atmospheric predictability. 

3.1  The globally spatial distribution of the atmos-
pheric predictability 

For the time series of all the grids in the global, we 
compute the nonlinear local Lyapunov exponent and 
the relative error growth, determine the maximal pre-
diction time and obtain its spatial distribution, as 
shown in Fig. 4. 

 
Fig. 4.  Panel on the left is the global distribution of the maximal pre-
diction time in the whole year and on the right is the latitudinal distri-
bution of the zonal mean prediction time. 

 
Fig. 4 shows that atmospheric predictability has a 

distinct spatial structure. Roughly speaking, it has a 
zonal distribution, the highest predictability exists in 
the tropics, the second is over the Antarctic; the pre- 
dictability is also higher in the Arctic and over the sub- 
tropics and the mid-high latitudes the predictability is 
lowest. In particular, near the equator the average pre- 
diction time is 12 days, main regions of high predict- 
ability are the tropical Indian Ocean, Indonesia and the 
neighboring regions, the tropical Eastern Pacific and 
the prediction time is about two weeks. Interestingly, 
the predictability over the Antarctic is enhanced and 
the time is about 9 days, it is particularly evident dur- 
ing its austral summer (Fig. 6), which is perhaps re- 
lated to the small high-frequency variability that is 
probably linked to the low baroclinicity and the low 
wind speeds in summer. Using the numerical model, 
Reichler and Roads[34], Kumar et al.[35], and Bacmeis- 
ter et al.[36] also confirmed that there is a higher pre- 
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dictability near the neighbor of the Antarctic. Tren- 
berth[37] obtained the similar conclusion by the study 
of the experimental data. These verify the results in 
this paper in all aspects. Moreover, in this paper we 
may estimate the maximal prediction time, which 
shows that this method has more advantages. The pre- 
dictability over the Arctic is also higher than the mid- 
high latitudes, but the feature is less pronounced than 
the one near the Antarctic. In subtropics and mid lati-
tudes (30°―60°S and 30°―60°N) regions, predict-
ability is lowest and the average time is just 3―4 days. 
Predictability also shows the zonal asymmetry, for 
example, the North Atlantic and the middle of North 
Pacific have a higher predictability than other regions 
in the same latitude. 

3.2  The latitudinal distribution of the maximal pre-
diction time 

Due to the difference of the spatial scale, zonally 
averaged fields may have different predictability from 
the original fields. In order to verify it, we compute 
the nonlinear local Lyapunov exponent according to 
the zonal mean time series and also obtain the maxi-
mal prediction time in all latitudes (see Fig. 5). 

 
Fig. 5.  Prediction time distributions for zonally averaged height. 
 
Note that the prediction time of 500 hPa zonally 

averaged height shows an almost symmetric distribu-
tion in the Northern and Southern Hemispheres, which 
is that from the tropics to the mid-high latitudes, the 
prediction time decreases to the minimum in the re-
gions of 50°―60°, while it tends to increase near the 
Antarctic and Arctic. The predictability over the trop-
ics (10°S―10°N) is highest and the average prediction 
time is two weeks; in the latitudes of 15°―45°, the 
prediction time is about 10―11 days; while in 50°―

60°, it is just 5―6 days. The decrement in the mid 
latitude of the Northern Hemisphere is much faster 
than the same latitudes of the Southern Hemisphere. 
Next to the polar, the predictability is enhanced par-
ticularly in 65°S―80°S, which has 8―9 days pre-
dictability. In latitudes of 70°―85°N, the predictabil-
ity is also higher than the neighboring and the predic-
tion time is about one week, but its enhancement is not 
as remarkable as the case in the Antarctic. All of these 
results are similar to Fig. 4, the only exception is that 
in the areas of 15°―45° of the two Hemispheres, the 
zonally averaged field seems to have the same predic-
tion time, while for the daily original field, the pre-
dictability is weakened as the latitudes increase. 
Moreover, Fig. 5 shows that the zonally averaged field 
has a higher predictability than the daily original field, 
which means that predictability is indeed related to the 
spatial scale and the larger the scale is, the higher the 
predictability becomes. 

3.3  Prediction time global distribution in winter and 
summer  

The predictability changes in different seasons. In 
order to explore seasonal difference in the magnitude 
and spatial characteristics of the global atmospheric 
predictability, we compute the maximal prediction 
time in winter according to daily relative error nonlin-
ear growth on November―February; similarly ac-
cording to the daily relative error growth on June―
August, we obtain the summer prediction time. Results 
are shown in Figs. 6 and 7. 

In either winter or summer, atmospheric predict- 

 
Fig. 6.  Similar to Fig. 4 but for the Northern Hemisphere winter 
(DJF). 
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Fig. 7. Similar to Fig. 4 but for the Northern Hemisphere (NH) summer 
(JJA). 

 
ability also shows the distinctive zonal distribution, 
similar to the average case in whole year. But com-
paring Fig. 6 to Fig. 7 we know that the distributions 
of the prediction time are quite different in the two 
contrasting seasons. In the Northern Hemispheric win-
ter, the higher predictability regions are located in the 
tropical Indian Ocean, Indonesia and the neighboring 
regions, the tropical eastern Pacific Ocean; while in 
the Northern Hemispheric summer, they are located in 
Africa, the tropical Atlantic and the tropical mid-east- 
ern pacific. During both seasons, there exist higher 
predictability regions near the Antarctic, but this 
feature is more distinct in the Southern Hemispheric 
summer. For the most regions in mid-high latitudes of 
the Northern Hemisphere (30°N ― 60°N), the 
predictability is higher in winter than in summer, es-
pecially in the North Pacific (near the American coast), 
North Atlantic and other regions. While in Western 
Europe, the predictability in summer is higher than in 
winter. In the mid- high latitudes of the Southern 
Hemisphere (30°S―60°S), the prediction time in most 
areas changes little, it is about 3―5 days. 

4  Summary 

Estimating the growth of small initial errors in finite 
time is the main aim and method to study the atmos-
pheric predictability. Because atmosphere itself is a 
nonlinear system and there exist some problems using 
the linearized equations to study the initial error 
growth, so in this paper based on the nonlinear error 
growth equation we first put forward a new concept: 

nonlinear local Lyapunov exponent. It is the locally 
average nonlinear divergence rate of the initial error in 
finite time. From the theoretical analysis, we know 
that the exponent has both the mathematical and 
physical bases and compared to the classical Lyapunov 
exponents, it may better quantify the time evolution of 
the real atmospheric initial observational error. Con-
sidering its definition and the atmospheric dynamics, 
we provide the reasonable algorithm to the exponent 
for observational data. By the computation results 
contrasting, we discuss in detail the difference be-
tween the linear theory and nonlinear theory and focus 
on the role of the nonlinear term to the error growth. 
Results show that the nonlinear local Lyapunov expo-
nent really may better characterize the real atmos-
pheric initial error nonlinear growth rate. Next, we 
define the time when error reaches the 99% saturated 
value as the maximal prediction time, which is the 
essential difference from most classic predictability 
researches. Lastly, we discuss the application of the 
nonlinear local Lyapunov exponent in the study of the 
atmospheric predictability and obtain spatial distribu-
tion and seasonal difference of the global atmospheric 
predictability. The main conclusions are: atmospheric 
predictability has a distinct spatial structure. Roughly 
speaking, it shows a remarkable zonal distribution. 
The highest predictability is located over Tropics and 
the Antarctic, near the Arctic it is relatively larger but 
in the subtropical and the mid-latitude of the two 
Hemispheres the predictability is lowest. In particular, 
near the equator the average prediction time is 12 days, 
main regions of high predictability are tropical Indian 
Ocean, Indonesia and the neighboring regions, tropical 
Eastern Pacific and the time is about two weeks. In-
terestingly, over the Antarctic atmosphere has a higher 
predictability of 9 days than mid-high latitude; this 
feature is particularly evident during its austral sum-
mer. Near the Arctic, the predictability is also rela-
tively higher than the neighboring but the feature is 
less pronounced than the case near the Antarctic. In 
addition, predictability changes in different seasons. 
For most regions in the Northern Hemisphere, the pre-
dictability is higher in winter than in summer, espe-
cially in the mid-high latitude, North Atlantic, North 
Pacific, Greenland and other regions; in the Southern 
Hemisphere, over the Antarctic regions the predict-
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ability is higher in the associated summer than in win-
ter, other regions especially in 30°S―60°S, it hardly 
changes and the time is about 3―5 days. 

Besides 500 hPa height, we also discuss by this ex-
ponent the predictability of 850 hPa temperature field, 
obtain some reasonable results. All of these show that 
the nonlinear local Lyapunov exponent really may be 
used to explore the predictability of all variables in the 
different temporal and spatial regions. With the further 
research, we believe that the nonlinear local Lyapunov 
exponent has a better application in the atmospheric 
and oceanic theoretical research. 

Acknowledgements The authors would like to thank aca-
demician Chou Jifan for the kindly direction. This work was 
supported by the National Natural Science Foundation of 
China (Grant Nos. 40325015 and 40221503). 

References 

1 Chou J F. Predictability of the atmosphere, Adv Atmos Sci, 1989, 
6: 335―346 

2 Thompson P D. Uncertainty of initial state as a factor in the pre-
dictability of large-scale atmospheric flow patterns. Tellus, 1957, 
9: 275―295 

3 Lorenz E N. Three approaches to atmospheric predictability. Bull 
Ame Meteor Soc, 1969, 50: 345―349 

4 Charney J G, Fleagle R G, Riehl H, et al. The feasibility of a 
global observation and analysis experiment. Bull Amer Meteor 
Soc, 1966, 47: 200―220. 

5 Smagorinsky J. Problems and promises of deterministic extended 
range forecasting. Bull Amer Meteor Soc, 1969, 50: 286―311 

6 Lorenz E N. A study of the predictability of a 28 variable atmos-
pheric model. Tellus, 1965, 17: 321―333 

7 Lorenz E N. Atmospheric predictability experiments with a large 
numerical model. Tellus, 1982, 34: 505―513 

8 Li J P, Zeng Q C, Chou J F. Computational uncertainty principle 
in nonlinear ordinary differential equationas I. numerical results. 
Sci China Ser E-Eng Mater Sci, 2000,43(5): 449―460 

9 Li J P, Zeng Q C, Chou J F. Computational uncertainty principle 
in nonlinear ordinary differential equationas II. theoretical analy-
sis. Sci China Ser E-Eng Mater Sci, 2001, 44(1): 55―74 

10 Mu M, Li J P, Chou J F, et al. Theoretical research on the predict-
ability of climate system. Clim Environ Res (in Chinese), 2002, 
7(2): 227―235 

11 Feng G L, Dai X G, Wang A H, et al. The study of the predictabil-
ity in chaotic systems. Chin Phys (in Chinese), 2001, 50: 606―
611 

12 Gao X Q, Feng G L, Chou J F, et al. On the predictability of cha-
otic systems with respect to maximally effective computation time. 
Acta Meteorol Sin, 2003, 19: 134―139 

13 Dalcher A, Kalnay E. Error growth and predictability in opera-
tional ECMWF forecasts. Tellus A, 1987, 39: 474―491 

14 Arpe K, Klinker E. Systematic errors of the ECMWF operational 

forecasting model in mid-latitudes. Quart J Roy Meteor Soc, 1986, 
112: 181―202 

15 Yang P C, Chen L T. The predictability of El Niño/Southern Os-
cillation. J Atmos Sci (in Chinese), 1990, 14: 64―71 

16 Yang P C, Liu J L, Yang S W. The strange attractor of low atmos-
pheric movement. J Atmos Sci (in Chinese), 1990, 14: 335―341 

17 Zheng Z G, Liu S D. Computation of Lyapunov exponent and 
fractal dimension by using atmospheric turbulent data. Acta Me-
teorol Sin (in Chinese), 1988, 41―48 

18 Farmer J D, Ott E, Yorke J A. The dimension of chaotic attractors. 
Physica D, 1983, 7: 153―180 

19 Grassberger P, Procaccia I. Dimensions and entropies of strange 
attractors from a fluctuating dynamics approach. Physica D, 1984, 
13: 34―54 

20 Legras B, Ghil M. Persistent anomalies, blocking and variations 
in atmospheric predictability. J Atmos Sci, 1985, 42: 433―471 

21 Nese J M. PhD dissertation, Pennsylvania State University, 1989 
22 Nese J M. Quantifying local predictability in phase space. Physica 

D, 1989, 35: 237―250 
23 Farrell B F. Small error dynamics and the predictability of atmos-

pheric flows. J Atmos Sci, 1990, 47: 2409―2416 
24 Houtekamer P L. Variation of the predictability in a low-order 

spectral model of the atmospheric circulation. Tellus A, 1991, 
43(3): 177190 

25 Yoden S, Nomura M. Finite-time Lyapunov stability analysis and 
its application to Atmospheric Predictability. J Atmos Sci, 1993, 
50: 1531―1543 

26 Kazantsev E. Local Lyapunov exponents of the quasi-geostrophic 
ocean dynamics. Appl Math Comp, 1999, 104: 217―257 

27 Ziehmann C, Smith L A, Jürgen K. Localized Lyapunov expo-
nents and the prediction of predictability. Phys Lett A, 2000, 271: 
237―251 

28 Oseledec V I. A multiplicative ergodic theorem. Lyapunov char-
acteristic numbers for dynamical systems. Trans Moscow Math 
Soc, 1968, 19: 197―231 

29 Lacarra J F, Talagrand O. Short-range evolution of small perturba-
tions in a barotropics model. Tellus A, 1988, 40: 81―95 

30 Tanguay M, Bartello P, Gauthier P. Four-dimension data assimila-
tion with a wide range of scales. Tellus A, 1995, 47: 974―997 

31 Mu M, Guo H, Wang J F, et al. The impact of nonlinear stability 
and instability on the validity of the tangent linear model. Adv 
Atmos Sci, 2000, 17(3): 375―390 

32 Wolf A, Swift J B, Swinney H L, et al. Determining Lyapunov 
Exponents from a time series. Physica D, 1985, 16: 285―317 

33 Li J P, Chou J F. Some problems existed in estimating fractal di-
mension of attractor with one-dimensional time series. Acta Me-
teorol Sin (in Chinese), 1996, 54(3): 312―323 

34 Reichler T, Roads J O. Time-space distribution of Long-Range 
Atmospheric Predictability. J Atmos Sci, 2004, 61(3): 249―263 

35 Kumar A, Schubert S D, Suarez M S. Variability and predictabil-
ity of 200–mb seasonal mean heights during summer and winter. J 
Geophys Res, 2003, 108(D5), 4169, doi: 10.102/2002JD002728 

36 Bacmeister J T, Pegion P J, Schubert S D, et al. Atlas of seasonal 
means simulated by the NSIPP1 atmospheric GCM, NASA Tech. 
Memo. 104606, Goddard Space Flight Center, 2000, 194 

37 Trenberth K E. Potential predictability of geopotential heights 
over the Southern Hemisphere. Mon Wea Rev, 1985, 113: 54―64 


	Nonlinear local Lyapunov exponent and atmospheric  predictability research 
	CHEN Baohua1, LI Jianping1,2 & DING Ruiqiang2 
	1  Theoretical background 
	2  Data, computation method and the comparison to the classic method 
	3  The application of the nonlinear local Lyapunov exponent in the atmospheric predictability 
	4  Summary 




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


